Fermilab Run II Performance

RHIC Retreat, June 15-17 2005

Jim Morgan Fermilab Accelerator Division

Some similarities and differences between RHIC and the Tevatron

- Both are Colliders with multiple experiments, halo removal, beam-beam etc.
 - lons vs. proton-pbar
 - Fermilab has longer stores, but similar percentage of up-time and physics hours
 - Duration of runs (Typically 40 weeks for the Tevatron)
 - Fermilab shutdowns have extreme time pressure and are driven by upgrades
 - Run II is expected to end when the LHC begins taking physics data
- The Tevatron runs very close to its quench limit
- Demands on accelerators in addition to collider operations
 - FNAL injection chain required to run continually
- Roll of Run Coordinator
 - Fermilab Run Coordinator similar to RHIC's, but also
 - Handles scheduling duties including accelerator and experimental accesses (including filtering)
 - Schedules store parameters and duration as well as study periods
 - Needs to communicate plan to all interested parties
- Need to increase luminosity without too much disruption
- We have one experiment (CDF) more sensitive to backgrounds than the other (D0)
 - Our goal is to maximize integrated luminosity to tape for both experiments
- Beam position control and correction crucial
 - It was beneficial for us to instrument our low beta quadrupoles
- We worry about our budget, manpower and future too

Fermilab Complex

The Fermilab Collider is a Antiproton-Proton Collider operating at 980 GeV

Proton Acceleration

- H- ions are accelerated to 750 keV in the Crockoft-Walton
- H- ions are accelerated to 400 MeV in the Linac
- H- ions are stripped and multi-turn injected onto the Booster
- Protons are accelerated from 400 MeV to 8 GeV in 33 mS in the Booster
- In the Main Injector Protons are accelerated from 8 GeV
 - to 120 GeV for NuMI operation and pbar production in 2.0 - 4.0 seconds
 - to 150 GeV for Tevatron filling in 3.0 seconds
 - to Switchyard, resonantly extracted for two fixed target users
- Protons are accelerated from 150 GeV to 980 GeV in the Tevatron

FermilabTevatron Accelerator With Main Injector

Pbar production

- 1x10⁸ 8 GeV pbars are made every 2-4 seconds by delivering 7x10¹² 120 GeV protons onto an Inconel target
- 8 GeV Pbars are focused with a lithium lens operating at a gradient of 760 Tesla/meter
- 30,000 pulses of 8 GeV Pbars are collected, stored and stochastically cooled in the Debuncher and Accumulator and Recycler Rings
 - The stochastic stacking and cooling increases the 6-D phase space density by a factor of 600x10⁶
- 8 GeV Pbars are accelerated to 150 GeV in the Main Injector and to 980 GeV in the Tevatron (36p x 36pbar)

FermilabTevatron Accelerator With Main Injector

Fermilab **Accelerator Division** Minn. NuMI/MINOS 111. MINOS Near Detector / Decay Enclosure Target Enclosure Tevatron Main Injecto

○FERMILAB #98-1321D

Tevatron tunnel

Collider stores over a week

Collider History

- 1986-1987 Engineering Run
 - .05 pb⁻¹
- 1988-1989
 - 9.2 pb⁻¹
- Run la (1992-1993)
 - 32.2 pb⁻¹
- Run Ib (1994-1996)
 - 154.7 pb⁻¹ (196 pb⁻¹ cumulative)
- Run II (2002-2009)
 - 4,000 8,000 pb⁻¹ planned

Changes for FY04

- Run had been in a "commissioning" mode in FY02 and FY03
 - Emphasis was on providing study time to meet goals
 - Progress had been well below expectations (and the run was 25% over)
- Philosophy shift to considering the Collider commissioned
 - Focus changed to operating the Collider
 - Study time was primarily devoted to improving machine performance (present and future)
 - Studies required a plan and purpose
 - Study time was scheduled to minimize the impact on operations
 - Shutdowns and accesses were kept as short as possible
 - Emphasis on improving performance and reliability
 - Most aspects of operating the accelerators had become routine
- The competition for beam, study time, and resources between the Collider and external beam lines increased significantly in FY04
 - Recycler was being commissioned
 - MiniBoone was operational
 - SY120 became operational
 - NuMI was gearing up to start commissioning in early FY05
- Provide long-term continuity for operational goals, strategy and monitoring.
- Improve/clarify assignments of responsibility for
 - study strategy and coordination
 - machine parameter targets
 - shot strategy
- Involve experiments directly in the decision-making process

Changes for FY04 and the future

- The task for coordinating the operations of the accelerators in FY04 became the <u>permanent</u> responsibility of the new Integration Department.
- The leader of the Integration Department is the Associate Division Head for Systems, Operations, and Integration.
- This Integrations Department is divided into four wings
 - Operations Coordination
 - Shot Analysis and Strategy
 - Accelerator Physics and Accelerator Studies
 - Rapid Response Team
- The Operations Department will assume more responsibility for operating the accelerators
 - Larger reliance on Crew Chief decision making (as in the latter part of Run I)
 - Run Coordinator provides guidelines for Crew Chief
- Improved communication between the Run Coordinator and Experiments
 - Experiments participate in daily Integration Meeting
 - Run Coordinator elog used to disseminate information
- Future changes
 - Run Coordinator becomes three-person team
 - A second deputy RunCo has been recently added
 - In FY06, the deputies will take on the day to day responsibilities
 - I'll be the team leader, concentrating on shot analysis, operational and studies priorities
- Associate Division Head becomes more involved in problem areas
 - Will lead Rapid Response Teams when appropriate
 - Has been involved with planning what happens after Run II
- Rapid Response team may merge with Accelerator Physics

Run Coordinator's Responsibilities

- Create and coordinate the operational planning for the accelerator complex
 - Run daily Integration Meeting to discuss and formulate the operational plan
 - Schedule Recycler and Colider transfers
 - Coordinates studies and commissioning activities
 - Tevatron and accelerators, SY120, Recycler, Ecool and NuMI
 - Also NTF, MTA and MuCool
 - Schedule accelerator studies
 - Schedules shutdowns and maintenance
 - Evaluates and oversees operational policies of Systems Departments
 - Monitors peak operating performance of the accelerators
 - Receives and coordinates requests from the experiments
- Operational planning and coordination now the primary focus
 - Long range planning and presentations are handled by Associate Division Head
 - Creation of integration team reduces the burden on the Run Coordinator
- Uses input from other groups within the Integration Department in decision making
 - Shot analysis, evaluating studies requests etc. is now a group effort
- Run Coordinator is no longer a 4-month term
 - Provide long-term continuity for operational goals, strategy and monitoring
 - Part of the work load is shifted to other members of the Integration and Operations Departments

Communications

- The primary tool for communications is the DAILY Operations Meeting
 - This meeting
 - Is short (20-30min) and focused
 - Has a well defined agenda and goals
 - To keep communication open and direct, attendance to this meeting is limited
 - At most 2 representatives from each system in which one is the machine coordinator
 - At most 2 representatives from each support department
 - At most 2 representatives from each experiment
 - The Friday meeting is open to anyone and also has weekly reports from the various machines
 - At the end of the meeting the systems, support departments, and the experiments know exactly when the plan for the day is
 - This plan is summarized as an entry in the Run coordinator elog for the rest of the lab to read
 - Changes in the plan are communicated via the MCR Operators and Run Coordinator elog
- An important basis for communications is Shot Data Analysis (SDA)
 - SDA
 - Rapidly identifies under (or over) performing systems
 - Is used for judging performance of systems at the daily operations meeting.
 - Is used for predicting future performance
 - Eliminates many conversations that begin with "I remember when we had a store that..."
 - A large number of standardized plots are produced daily and posted on the web
 - Important analysis
 - Single store snapshot
 - Parameters as a function of store number
 - SDA consists of
 - A dedicated database
 - Tools for setting up automated acquisition of data into the data base
 - Tools for retrieving data from the database

Luminosity projection for FY04

Major Accomplishments in FY04

Proton Source

- Operational Improvements
 - Booster Aperture
 - Alignment of Booster cavities and Magnets
 - Long 3 septum
 - New dogleg magnets at Long 3
 - Removal of beta wave
 - Less tune shift
 - Damper mode number and Power increase
 - Matching of the 400 MeV Line
 - Harmonic Correction
 - Two stage collimation system
- Records
 - Record intensities- 6.0x10¹² protons/pulse
 - Record Efficiencies > 85%
 - Record Throughput
 - > 6.8x10¹⁸ protons/week
 - > 6.0x10¹⁶ protons/hour
 - $> 4.5 \times 10^{17}$ protons/shift

Antiproton Source

- Stacking rate 13.65x10¹⁰ pbars/hour
- Largest stack 246x10¹⁰
- Longest sustained stack > 2 months
- Debuncher Aperture Increase
- Main Injector Debuncher Phase alignment system
 - Aperture Increase
 - 8 GeV alignment across the injector complex now possible

Major Accomplishments in FY04 (cont.)

Recycler

- Recycler bake-out was extremely successful
 - Transverse emittance growth reduced by a factor of 4-5
- Recycler shots to the Tevatron
 - Initial Luminosity > 17x10³⁰cm⁻²sec⁻¹
 - Integrated useable luminosity
- Stack of >150x10¹⁰ pbars in the Recycler
- Recycler was put into Mixed Source operations
- Recycler was ready for Electron Cooling

Tevatron

- Lifetime at 150 GeV
 - Larger Aperture, alignment and dipole un-rolls
 - Use of Octupoles to control differential chromaticity
- Emittance dilution reduced
 - Smart bolt retrofit -> de-coupling at TEV injection
 - Optimization of injection optics
- CDF IP
 - Location of IP was 4-5 mm too high vertically
 - Significant impact on CDF's
 - Silicon tracking efficiency
 - SVX longevity due to radiation damage
 - Rapid response team was organized during the 1 week shutdown in early December (due to the 16 house quench) to find a solution to move the CDF IP down by 4 mm
- New Low Beta Optics
 - 20% increase in luminosity

FY04 Machine Issues

Linac

- Availability of low energy Linac RF Power tubes
- Klystron spare viability

Booster

- Radiation damage due to the proton demands of the neutrino program.
 - Running at record throughput
 - Commissioning cogging (needed for slip-stacking and NUMI)
 - Preliminary stages of developing a proton plan
 - Pulse component upgrade
 - Aperture upgrade (RF stations and kickers)
 - Alignment upgrade (TEV style alignment network)
 - Closed orbit control (ramped magnets and power supplies)

Pbar Production

- Increase transverse aperture of AP-2 and the Debuncher
- Greatly improve D/A transfer at fast cycle times
- Minimized the Momentum Spread in the Debuncher
 - Increase the bandwidth of the Debuncher Momentum cooling system (~20%) with equalizers
 - Optimize gain and gain ramping in the Debuncher momentum cooling
 - Investigate a static change in gamma-t in the Debuncher
 - Trade-off of bunch rotation bucket are vs good mixing for the accumulator
 - Investigate the feasibility of ramping gamma-t in the Debuncher

FY04 Machine Issues (cont.)

Recycler

- Transverse emittance growth is NO LONGER an issue
 - Recycler bake-out was extremely successful
 - Transverse emittance growth reduced by a factor of 4-5
- Mixed Source Mode Operations
 - Injection and Extraction Transfer mechanics
 - Transverse stochastic cooling cooling rate
 - Longitudinal emittance dilution
 - During injection and extraction
 - During storing
 - Beam stability

Tevatron

- More magnet unrolls and cold lifts required during shutdown
- Ready for additional separator to be installed during shutdown
 - Need to determine benefit of further upgrades
- Improve protection to experiments and components from beam loss

FY04 Lessons

Tevatron Abort

- Because of the Experiments' silicon detectors, we cannot tolerate "messy" aborts
- A single messy abort triggers a TEV study to determine cause and fix
- A procedure to verify that the abort system is working properly.
 - Examine the possibility of a hardware system that can detect if the abort system is functioning

Tevatron Beam Energy

- 1MegaJoule in beam energy
- Review of the policy for masking aborts
- Reduce the time between the initiation of beam loss and abort
- Quench protection upgrade solved the problem

Peak Luminosity

Integrated Luminosity

FY04 Summary

Collider performance in FY04

- Delivered 345 pb⁻¹ in 39 weeks (8.8 pb⁻¹ per week)
- The peak luminosity and the luminosity per week has doubled from FY03
- Most of the Tevatron parameters are close to the design values
- The Proton Source is operating at record intensities, efficiencies, and throughput.
- Slip Stacking has been commissioned in the Main Injector
- The Recycler was:
 - ready for electron cooling
 - Dramatically increased peak luminosity through mixed-pbar operations
- Pbar production is well below the design parameters but the study plan executed over the summer indicates that the source of the shortfall is the result of a small effective aperture in the D-A line

FY05 will be a pivotal year for the Run II Collider

- Pbar stacking
- Mixed Pbar operation
- Electron cooling installation and commissioning
- NUMI Commissioning and Running
- MiniBoone and SY120 continue
 - Not enough protons to go around

Plans for FY05

- Demonstrate electron cooling of antiprotons by the end of FY05
- Run Slip Stacking at 8x10¹² protons/pulse every 2 secs
- Increase the pbar production aperture by 25%
- Stack at small stacks with a rate of 18-24x10¹⁰ pbars/hr
- Run the complex in Mixed Pbar operations
 - Assume the gain from Mixed Pbar operations is at least "break-even" on integrated luminosity
- Run NUMI at a 2 sec. cycle time with 2.5x10¹³ protons/cycle by the end of the year
 - Keep activation levels in Booster at the April 29, 2004 level.
- Continue to run MiniBoone and SY120
 - Will need guidance from Program Planning on the priorities of NUMI, MiniBoone, SY120
- Integrate 470pb⁻¹ in 34 weeks (average ~14pb⁻¹/week)

FY05 Goals Integrated Luminosity

FY05 Goals Peak Luminosity

Combined Shots

- Extracting antiprotons from both the Accumulator and the Recycler for the same store i.e.
 - Twelve bunches from the Recycler
 - Twenty four bunches from the Accumulator

Combined Shot Operation

- Proposed in February '04
- Initial proposal presented at the April '04 Run II PMG
- Dual energy ramps in the MI completed and tested by May '04
- First Attempt 6/13/04
- Record Luminosity
 - 103x10³⁰cm⁻²sec⁻¹ recorded July 2004
 - 127x10³⁰cm⁻²sec⁻¹ recorded May 2005
- Routine Operations January 2005

Reasons

- Flexibility in the Run II Upgrade schedule
 - Natural merging of commissioning of electron cooling
- Push Recycler commissioning progress by plunging it into operations
- Luminosity enhancement larger amount of antiprotons for smaller emittances
 - Accumulator stack size limited to <200 mA
 - Stacking Rate
 - Transverse emittance vs Stack Size

Ratio I_{Recycler}/I_{Accumulator} is governed by:

- Recycler phase space density (cooling)
- Recycler transfer time (Rapid transfers)

Obstacles

- Stacking Rate
- Injector Complex 8 GeV energy alignment
- Longitudinal emittance in both the Accumulator and Recycler
- Transfer time between Accumulator to Recycler

Pbar stacking performance

Accumulator Stack Size vs. Transverse Emittance

Accumulator to Recycler Antiproton Transfers

- Transfers between the Accumulator to the Recycler take about 1 hour to accomplish
 - Presently 1 or 2 sets of transfers to support a collider store
- To realize the full potential of electron cooling, in the Recycler, this time needs to be reduced to less than 15 minutes with >90% efficiency
- Adopt a philosophy of being willing to lose a pbar transfer occasionally
 - Transfers frequency eventually faster than every 2 hours

Electron Cooling

- The maximum antiproton stack size in the Recycler is limited by
 - Stacking Rate
 - Longitudinal cooling in the Recycler
- Longitudinal stochastic cooling of 8 GeV antiprotons in the Recycler is to be replaced by Electron Cooling
 - Electron beam: 4.34 MeV 0.5 Amps DC 200µrad beam spread 99% recirculation efficiency
- Installation of e-cool equipment in MI-31 and the Recycler tunnel complete
- Commissioning of electron cooling in progress
 - Electron beam circulated in cooling section
 - Commissioning due to be completed by September 2005

Luminosity in Run II

- Luminosity increase is mostly due to:
 - Decision to "run" the Collider
 - Rigorous approach to attacking operational problems
 - De-emphasis of long periods of dedicated machine studies
 - Better performance of the injector chain
 - Faster pbar stacking because of increased protons on target
 - Alignment of the Tevatron
 - Introduction of the Recycler into operations

Other Business - Fixed Target FY05 Accomplishments

- Record throughput for MiniBoone
 - 8.0x10¹⁶protons/hour
 - Delivered a over 5x10²⁰protons in under three years of running
- Routine running of Mixed Mode for SY120 with slip-stacking for pbar production
 - A factor of 7 more spill seconds then originally allocated
 - And they're still unhappy
 - NUMI has taken the place of SY120 on the antiproton stacking cycles, a new long flattop ramp has kept about half of the spill-seconds intact (with a 5% hit to NuMI and pbar production).
- NUMI commissioned
 - First beam on Dec. 4, 2004
 - Around the clock operations on March 14, 2005
 - Target problems April 2005
 - Have resumed operations in Mixed-Mode antiproton stacking cycles

Integrated Luminosity in Run II

Summary

- Since last year's retreat, the Tevatron has seen:
 - 60% increase in peak luminosity
 - 40% increase in integrated luminosity per week
 - 100% increase in integrated luminosity for Run II
- Luminosity increase is mostly due to:
 - Better performance of the injector chain and faster stacking (up to 16E10/Hr)
 - Introduction of the Recycler into operations
 - Decision to "run" the Collider
 - Rigorous approach to attacking operational problems
 - De-emphasis of long periods of dedicated machine studies
- The Run II Upgrades are on track to provide more than 4fb⁻¹ by 2009
 - The Recycler is operational
 - Electron cooling is progressing well
 - Slip Stacking is operational
- The major challenges left in Run II centers on antiprotons
 - Commission electron cooling in the Recycler
 - Increase the antiproton production rate
 - AP2- Debuncher aperture upgrade, Lens upgrade
 - Debuncher to accumulator transfers, stacktail momentum upgrade
 - More protons on target with acceptable losses in the Main Injector
 - Rapid transfers between the Accumulator and Recycler, fast and efficient